
Xiao YH, Zhu ZF, Zhao Y et al. Class-driven non-negative matrix factorization for image representation. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(5): 751–761 Sept. 2013. DOI 10.1007/s11390-013-1374-9

Class-Driven Non-Negative Matrix Factorization for Image

Representation

Yan-Hui Xiao (肖延辉), Zhen-Feng Zhu (朱振峰), Yao Zhao∗ (赵 耀), and Yun-Chao Wei (魏云超)

Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

E-mail: xiaoyanhui@gmail.com; {zhfzhu, yzhao, 11112065}@bjtu.edu.cn

Received May 5, 2013; revised August 6, 2013.

Abstract Non-negative matrix factorization (NMF) is a useful technique to learn a parts-based representation by decom-
posing the original data matrix into a basis set and coefficients with non-negative constraints. However, as an unsupervised
method, the original NMF cannot utilize the discriminative class information. In this paper, we propose a semi-supervised
class-driven NMF method to associate a class label with each basis vector by introducing an inhomogeneous representation
cost constraint. This constraint forces the learned basis vectors to represent better for their own classes but worse for the
others. Therefore, data samples in the same class will have similar representations, and consequently the discriminability in
new representations could be boosted. Some experiments carried out on several standard databases validate the effectiveness
of our method in comparison with the state-of-the-art approaches.
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1 Introduction

Data representation is a fundamental problem in im-
age processing and pattern recognition tasks. A good
representation can typically reveal the latent structure
of data, and further facilitate these tasks[1-3]. However,
in real applications, the input data matrix is generally
of very high dimension, which makes learning from ex-
ample infeasible. To solve this problem, matrix fac-
torization approaches are used to explore two or more
lower dimensional matrices whose product provides a
good approximation for the original data matrix. For
example, singular value decomposition (SVD) and prin-
cipal component analysis (PCA) decompose the origi-
nal matrix as the linear combination of principle com-
ponents.

In recent years, non-negative matrix factorization
(NMF)[4] has become popular for data representation
owning to its theoretical interpretation and practical
performance. Several studies[5-6] have shown that there
is psychological and physiological evidence for parts-
based representation in human brain. While NMF with
non-negative constraints could obtain a parts-based
representation since there are only additive, not sub-

tractive, combinations. Specifically, it models data as
a linear combination of a set of basis vectors, and both
the combination coefficients and the basis vectors are
non-negative. For example, a face image can be repre-
sented by an additive combination of several versions
of mouth, nose, eyes, and other facial parts. In addi-
tion, NMF has shown performance superior to PCA and
SVD in face recognition[7] and document clustering[8].

Several NMF variants have been developed by inte-
grating additional constraints into the original NMF.
Xu and Gong[9] presented a concept factorization (CF)
approach which expands NMF to the data contain-
ing negative values and can be implemented in the
kernel space. To consider the geometric structure in
the data, Cai et al.[10] presented a graph regularized
NMF (GNMF) method. GNMF leads to a new parts-
based data representation which respects the geomet-
rical structure of the data space. However, the above
NMF approaches ignore the discriminative label infor-
mation as an unsupervised learning algorithm.

In many real world applications, such as text
categorization[11] and data clustering[12], a small
amount of labeled data could be used to aid and bias
the learning of unlabeled data. Thus, semi-supervised
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GNMF[13] was suggested by incorporating label infor-
mation into graph structure. Nevertheless, there was
no theoretical guarantee that the same class data points
would be projected together into the parts-based rep-
resentation space, and it was still unknown that how to
determine the weights in a principled manner. To over-
come this limitation, Liu et al. developed a constrained
NMF method (CNMF)[13], which imposes the label in-
formation to the objective function as hard constraints.
Mathematically, given the label constraint matrix A,
CNMF is to find two non-negative matrix factors W
and S where the product of the factors W , A and
S is an approximation of the original matrix X (i.e.,
X = W (AS)T). However, since CNMF mapps the
images with the same label onto the same point, it is
infeasible when there is only one labeled training exam-
ple to rely on. That is to say, if there is only one labeled
sample, the label matrix A will become an identity ma-
trix and the label constraint will fail to work. In some
real-world applications, there are a lot of unlabeled data
(such as web pages on the Internet), but there is only
one labeled example (such as the current interesting
web page). Additionally, since the new representation
based on NMF is an additive combination of a set of
basis vectors (i.e., parts), the aforementioned NMF ap-
proaches fail to consider the correlation between the
basis vectors and class labels.

To overcome the above problems, we propose a semi-
supervised class-driven NMF method for image repre-
sentation, named cdNMF. Inspired by [14], we asso-
ciate a class label with each basis vector by introducing
an inhomogeneous representation cost constraint. This
constraint leads to learn a set of discriminative basis
vectors which are enforced to represent better for their
own classes but worse for the others. By minimizing
the inhomogeneous representation cost, we can learn
the basis even with one labeled example. Thus, data
samples belonging to the same class will have similar
representations, and the obtained new representations
can have more discriminative power. In addition, with
non-negative constraints, we can evaluate the inhomo-
geneous representation cost straightforwardly, which is
more simple and faster than using L2-norm in [14].
Furthermore, we utilize both Frobenius norm and KL-
divergence to measure the reconstruction cost with the
corresponding update rules.

2 Brief Review of NMF

As a matrix factorization algorithm, non-negative
matrix factorization (NMF)[4] is utilized to decompose
the original data matrix into a basis set and coeffi-
cients where the basis and coefficients are assumed to
be non-negative. Mathematically, given a data matrix

X = [xij ] = [x1, . . . ,xn] ∈ Rm×n, NMF aims to find
two non-negative matrices W = [wik] ∈ Rm×t and
S = [sjk] = [s1, . . . , sn]T ∈ Rn×t to approximate the
original matrix as follows

X ≈ WST,

where each row sj of S is a coefficient vector corre-
sponding to the sample vector xj , i.e., the column of
X. Therefore, the data xj could be approximated by a
linear combination of the columns of W with the coeffi-
cient sj . Thus, W and S can be regarded as a basis set
and coefficients, respectively. To quantify the quality of
the approximation, a cost function can be constructed
by some measures of distance. One popular measure is
the Euclidean distance (i.e., Frobenius norm).

OF = ||X −WST||2F . (1)

Although the objective function OF in (1) is not con-
vex with W and S together, the following alternating
algorithm[15] converges to a local minimum.

wik ← wik
(XS)ik

(WSTS) ik

,

sjk ← sjk
(XTW )jk

(SW TW )jk

. (2)

The other measure is not symmetric and referred as “di-
vergence” of X from Y = [yij ] = WST instead of dis-
tance between X and Y . When

∑
ij xij =

∑
ij yij = 1,

the “divergence” reduces to the Kullback-Leibler diver-
gence (KL-divergence), or relative entropy. Thus, we
can obtain the following objective function

OKL = D(X||Y ) =
∑

i,j

(
xij log

xij

yij
− xij + yij

)
. (3)

In addition, an iterative update algorithm[15] is pre-
sented as follows.

wik ← wik

∑
j

(
xijsjk

/ ∑
k
wiksjk

)

∑
j
sjk

,

sjk ← sjk

∑
i

(
xijwik

/ ∑
k
wiksjk

)

∑
i
wik

. (4)

The above update steps would find a local minimum
of the objective function OKL

[15]. In real applications,
we generally have t ¿ m and t ¿ n. Thus, NMF is
to explore a compressed approximation of the original
data matrix.
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3 Semi-Supervised NMF with Inhomogeneous
Representation Cost

The original NMF is an unsupervised method and
cannot utilize the label information. In this section, we
introduce a semi-supervised class-driven NMF method
(cdNMF), which employs an inhomogeneous represen-
tation cost constraint to associate class label with each
basis vector. Additionally, this constraint forces the
learned basis vectors to represent better for their own
classes but worse for the others.

To begin with some definitions, let X = [xij ] =
[x1, . . . ,xl+u] ∈ Rm×n(l + u = n) denote a given
dataset, where the first l samples are labeled data
and the remaining u ones are unlabeled, usually l ¿
u. In addition, the sample xj is labeled as bj ∈
{1, . . . , c} where c is the total number of classes.
Our goal is to learn a discriminative basis set W =
[W1,W2, . . . ,Wc] ∈ Rm×t, where Wi ∈ Rm×r is the
basis subset that can sparsely represent the i-th class
well but not others, r is the number of basis vectors of
each subset and t = r × c.

Denote S = [sjk] = [s1, . . . , sn]T ∈ Rn×t as coeffi-
cient matrix and D = [djk] = [db1 , . . . ,dbn ]T ∈ Rn×t

as indicator matrix for the inhomogeneous representa-
tion. Our goal is to utilize class information to learn
discriminative basis vectors, which represent better for
their own classes but worse for the others. Thus, we
hope that approximated parts-based representation sj

for sample xj with label bj in (1) and (3) will have the
following property:

dT
bj

sj = 0, (5)

where dbj
selects the inhomogeneous representation co-

efficients of sj , i.e., coefficients corresponding to ba-
sis vectors other than Wbj . For example, assuming
W = [W1, . . . ,W3], Wi ∈ Rm×2 (i.e., t = 6), there
are n data samples among which x1 belongs to the 1st
class, x2 belongs to the 2nd class, x3 belongs to the
3rd class, and the other n − 3 samples are unlabeled,
i.e., l = 3 and u = n − 3. Thus, the indicator matrix
DT = [db1 ,db2 ,db3 , . . . ,dbn ] can be defined as




l︷ ︸︸ ︷
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0
1 1 0

u︷ ︸︸ ︷
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0




,

where if xj (such as x4) is the unlabeled sample, we
set all the elements in dbj

(such as db4) to 0. For con-
venience, we term the (5) as the inhomogeneous rep-

resentation cost. (5) shows that the parts-based rep-
resentation sj in terms of basis matrix W will only
concentrate on the basis subset Wbj . The ideal basis
matrix W should consist of basis vectors where each
subset Wbj

can represent data samples from the bj-th
class rather than others class.

4 Class-Driven NMF Based on Frobenius
Norm Cost

Based on the Frobenius norm, we incorporate the in-
homogeneous representation cost into the function (1):

OF = ||X −WST||2F + λ
∑

j

dT
bj

sj

=Tr((X −WST)(X −WST)T) + λTr(DST)

=Tr(XXT) + Tr(WSTSW T)−
2Tr(XSW T) + λTr(DST),

where Tr(·) denotes the trace of a matrix, λ > 0 is
the regularization parameter and the steps of deriva-
tion employ the matrix property Tr(AB) = Tr(BA)
and Tr(B) = Tr(BT).

4.1 Multiplicative Update Rules Formulation

Given Φ = [φik] ∈ Rm×t and Ψ = [ϕjk] ∈ Rn×t,
denote φik and ϕjk as the Lagrange multipliers for con-
straint wik > 0 and sjk > 0. Thus, the Lagrange L is
as follows:

L =Tr(XXT) + Tr(WSTSW T)− 2Tr(XSW T)+

λTr(DST) + Tr(ΦW T) + Tr(ΨST). (6)

With respect to W and S, the partial derivatives of L
are

∂L

∂W
= −2XS + 2WSTS + Φ, (7)

∂L

∂S
= −2XTW + 2SW TW + λD + Ψ. (8)

By utilizing the KKT conditions φikwik = 0 and
ϕjksjk = 0, we obtain the following equations for wik

and sjk.

− (XS)ikwik + (WSTS)ikwik = 0, (9)

− (XTW )jksjk + (SW TW )jksjk +
1
2
(λD)jksjk = 0.

(10)

(9) and (10) lead to the following update rules:

wik ← wik
(XS)ik

(WSTS)ik

, (11)

sjk ← sjk
(XTW )jk(

SW TW + (λD)/2
)

jk

. (12)
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Regarding the update rules (11) and (12), we have the
following theorem.

Theorem 1. The objective function OF of cdNMF
in (6) is nonincreasing under the update rules in (11)
and (12). The objective function is invariant under
these updates if and only if W and S are at a sta-
tionary point.

Theorem 1 guarantees the convergence under the up-
date rules of W and S, i.e., (11) and (12), and the final
solution will be a local optimum. The proof of Theorem
1 is given in the following.

4.2 Proof of Convergence

In order to prove Theorem 1, the cost function OF

of cdNMF should be demonstrated to be nonincreasing
under the update steps in (11) and (12). Meanwhile we
has exactly the same update formula for W in (11) as
the original NMF[15]. In addition, (12) is only related
to S. Thus, we just consider that OF is nonincreasing
under the second update step in (12).

To prove the convergence of OF with (12), we em-
ploy the following property of an auxiliary function
similar to that used in the Expectation Maximization
algorithm[16].

Lemma 1. If G is an auxiliary function of F , i.e.,
G(s, s′) > F (s) and G(s, s) = F (s), then F is nonin-
creasing under the update.

s(q+1) = arg min
s

G(s, s(q)). (13)

Proof.

F (s(q+1)) 6 G(s(q+1), s(q)) 6 G(s(q), s(q)) = F (s(q)).

Notice that F (s(q+1)) = F (s(q)) holds only if s(q) is a
local minimum of G(s, s(q)). ¤

Now we will show that the update step for S in (12)
is exactly the update in (13) with a proper auxiliary
function G.

We rewrite the objective function OF of cdNMF in
(6) as follows:

OF = ||X −WST||2F + λ
∑

j
dT

bj
sj

=
∑

i,j

(
xij −

∑
k
wiksjk

)2

+ λ
∑

j,k
djksjk. (14)

Since the update is essentially element-wise, we use Fjk

to denote the part of OF which is only relevant to the
element sjk in S. Thus, we have

F ′jk =
(∂OF

∂S

)
jk

=(−2XTW + 2SW TW + λD)jk (15)

and
F ′′jk = (2W TW )kk. (16)

Lemma 2. Function

G(s, s(q)
jk ) = Fjk(s(q)

jk ) + F ′jk(s(q)
jk )(s− s

(q)
jk )+

(SW TW )jk +
1
2
λ(D)jk

s
(q)
jk

(s− s
(q)
jk )2

(17)

is an auxiliary function for Fjk, the part of OF which
is only relevant to sjk.

Proof. Since G(s, s) = Fjk(s) is obvious, we only
need to show that G(s, s(q)

jk ) > Fjk(s). To do this, we
compare the Taylor series expansion of Fjk(s):

Fjk(s) = Fjk(s(q)
jk ) + F ′jk(s(q)

jk )(s− s
(q)
jk )+

(W TW )kk(s− s
(q)
jk )2 (18)

with (17) to find that G(s, s(q)
jk ) > Fjk(s) is equivalent

to

(SW TW )jk +
1
2
λ(D)jk

s
(q)
jk

> (W TW )kk. (19)

It is easy to check that

(SW TW )jk =
t∑

l=1

s
(q)
jl (W TW )lk > s

(q)
jk (W TW )kk

(20)
and λ(D)jk > 0. Therefore, (19) holds and we have
G(s, s(q)

jk ) > Fjk(s). ¤
Now we can prove the convergence of Theorem 1.
Proof of Theorem 1. Replacing G(s, s(q)

jk ) in (13) by
(17) leads to the update rule

s
(q+1)
jk = s

(q)
jk − s

(q)
jk

F ′jk(s(q)
jk )

2(SW TW )jk + λ(D)jk

= s
(q)
jk

(XTW )jk(
SW TW +

1
2
λD

)
jk

.

According to Lemma 1, Fjk is nonincreasing under this
update rule. ¤

5 Class-Driven NMF Based on KL-Divergence
Cost

Based on the KL-divergence, we incorporate the in-
homogeneous representation cost into the cost function
(3), as follows
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OKL =
∑

i,j

(
xij log

xij∑
k

wiksjk
− xij+

∑

k

wiksjk +
∑

k

γdjksjk

)
, (21)

where γ > 0 is the regularization parameter.

5.1 Multiplicative Update Rules Formulation

Since the objective function OKL of cdNMF in (21)
is convex only with respect to W or S respectively, it
is unrealistic to find an algorithm to achieve the global
minimum of OKL. Similar to the original NMF[15], we
also obtain two update rules which can lead to a local
minimum:

wik ← wik

∑
j

(
xijsjk

/ ∑
k

wiksjk

)

∑
j

sjk
, (22)

sjk ← sjk

∑
i

(
xijwik

/ ∑
k

wiksjk

)

∑
i

wik + γdjk
. (23)

Regarding the update rules (22) and (23), we have the
following theorem.

Theorem 2. The objective function OKL of cd-
NMF in (21) is nonincreasing under the update rules
in (22) and (23). The objective function is invariant
under these updates if and only if W and S are at a
stationary point.

Theorem 2 guarantees the convergence of OKL un-
der the update rules of W and S in (22) and (23), and
the final solution will be a local optimum. The proof of
Theorem 2 is given in the following.

5.2 Proof of Convergence

Similar to the proof of Theorem 1, we only need to
prove that OKL is nonincreasing under the update step
in (23) for Theorem 2. In addition, the update step in
(23) is exactly the update in (13) with a proper auxi-
liary function.

Lemma 3. Function

G(S,S(q))

=
∑

i,j

(
xij log xij − xij +

∑

k

wiksjk +
∑

k

γdjksjk

)
−

∑

i,j,k

(
xij

wiks
(q)
jk∑

k

wiks
(q)
jk

(
log wiksjk − log

wiks
(q)
jk∑

k

wiks
(q)
jk

))

(24)

is an auxiliary function for

F (S) =
∑

i,j

(
xij log

xij∑
k

wiksjk
− xij+

∑

k

wiksjk +
∑

k

γdjksjk

)
.

Proof. Since G(S,S) = F (S) is obvious, we need
only show that G(S,S(q)) > F (S). To do this, we
utilize the convexity of the log function to derive the
inequality:

− log
( ∑

k

wiksjk

)
6 −

∑

k

(
αk log

wiksjk

αk

)
,

which holds for all non-negative αk that sum to unity.
Setting

αk =
wiks

(q)
jk∑

k

wiks
(q)
jk

,

we have

− log
( ∑

k

wiksjk

)
6 −

∑

k

( wiks
(q)
jk∑

k

wiks
(q)
jk

(
log wiksjk−

log
wiks

(q)
jk∑

k

wiks
(q)
jk

))
. (25)

From this inequality, we further get G(S,S(q)) > F (S).
¤

Proof of Theorem 2. Respect to S, the minimum of
G(S,S(q)) is determined by setting the gradient of G
to zero:

∑

i

wik −
∑

i

xij

wiks
(q)
jk∑

k

wiks
(q)
jk

1
sjk

+ γdjk = 0, (26)

where 1 6 j 6 n and 1 6 k 6 t. Thus, the update rule
of (13) takes the form

s
(q+1)
jk = s

(q)
jk

∑
i

(
xijwik

/ ∑
k

wiks
(q)
jk

)

∑
i

wik + γdjk
. (27)

Since G(S,S(q)) is an auxiliary function, F (S) is nonin-
creasing under this update. Rewritten in matrix form,
this is equivalent to the update rule in (23). ¤

6 Experiments

In this section, we will firstly introduce the ex-
perimental setup and evaluation metrics. Then, we
evaluate the performance of proposed cdNMF model
for data clustering on three public databases: Yale
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Face①, Caltech 101[17] and AT&T ORL② in compa-
rison with CF[9], NMF[15], GNMF[10], semi-supervised
GNMF (sGNMF)[13] and CNMF[13] (including CNMFF

and CNMFKL). Finally, we analyze the computational
complexity of cdNMF, and experimentally show the
speed of its convergence.

Following the same setting in CNMF, N categories
will be randomly picked up from the dataset by fixing
the cluster number N . All of these images are mixed as
the collection X for clustering. In addition, 10% ima-
ges are randomly selected from each category in X as
training data for the semi-supervised algorithms (such
as CNMF and our cdNMF). To obtain the new repre-
sentation S, we set the dimensionality of the new space
to be the same as the number of clusters N . Then K-
means is applied to S for clustering. The above process
is repeated 10 times, and the average clustering perfor-
mance is given as the final result. For convenience,
we term our cdNMF based on Frobenius norm cost as
cdNMFF and KL-divergence cost as cdNMFKL, respec-
tively.

6.1 Evaluation Metrics

The clustering results are usually evaluated by com-
paring the cluster label of each sample with its label
provided by the database. Similar to [13], two standard
clustering metrics, the accuracy (AC) and normalized
mutual information metric (NMI), are utilized to mea-
sure the clustering performance. Given a dataset with
n images, for each image xi, let ei and ri be the cluster
label and the label provided by the database, respec-
tively. The metric AC is defined as follows.

AC =
∑n

i=1 δ(ri,map(ei))
n

, (28)

where δ(x, y) is the delta function, which equals 1 if
x = y and equals 0 otherwise, and map(ei) is the map-
ping function that maps each cluster label ei to the
best label from the database. The best mapping can be
found by employing the Kuhn-Munkres algorithm[18].

Let C denote the set of clusters obtained from
the ground truth and C̃ obtained from our algorithm.
Their mutual information metric MI (C, C̃) is defined
as follows.

MI (C, C̃) =
∑

ci∈C,c̃j∈C̃

p(ci, c̃j)× log
p(ci, c̃j)

p(ci)× p(c̃j)
,

(29)

where p(ci) and p(c̃j) are the probabilities that an im-
age arbitrarily selected from the dataset belongs to the

cluster ci and c̃j , respectively, and p(ci, c̃j) is the joint
probability that the arbitrarily selected image belongs
to the cluster ci as well as c̃j at the same time. In our
experiments, we use the normalized mutual information
NMI as follows.

NMI (C, C̃) =
MI (C, C̃)

max(H(C),H(C̃))
, (30)

where H(C) and H(C̃) are the entropies of C and C̃,
respectively. Note that NMI (C, C̃) ranges from 0 to 1.
NMI = 1 if the two sets of clusters are identical, and
NMI = 0 if the two sets are independent.

6.2 Clustering on Yale Face Database

The Yale Face database consists of 165 grayscale
images with 15 subjects. Each subject has 11 im-
ages, which are different facial expressions or config-
urations: center-light, w/glasses (with glasses), happy,
left-light, w/no glasses (without glasses), normal, right-
light, sad, sleepy, surprised, and wink. Following the
same preprocessing[13], each image is represented by
a 1 024-dimensional vector in the original data space.
Fig.1 shows the effectiveness of the proposed cdNMF.
Especially, cdNMFKL outperforms all the other algo-
rithms all the way. The detailed results are described
in Table 1.

6.3 Clustering on Caltech 101 Database

Caltech 101 dataset contains 9 144 images which are
divided among 101 object classes and one background
class including animals, vehicles, etc. Following the
same experimental setup[13], we choose the 10 largest
categories as our experimental data which consists of
3 044 images in total, and extract the SIFT descriptors
to form a 500-dimensional frequency histogram for each
image. Fig.2 and Table 2 show the clustering results on
the Caltech 101. Specifically, cdNMFKL achieves the
best performance.

6.4 Clustering on AT&T ORL Database

The ORL database contains 10 different images each
of which contains 40 distinct subjects, thus 400 images
in total. For some subjects, the images were taken at
different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial de-
tails (glasses/no glasses). Fig.3 and Table 3 show the
effectiveness of the proposed cdNMF on ORL dataset.

It is easy to find that our proposed cdNMFKL has
the best performance compared with other algorithms
such as CNMFKL on both Yale Face and Caltech 101

①http://cvc.yale.edu/projects/yalefaces/yalefaces.html, Aug. 2013.
②http://www.uk.research.att.com/facedatabase.html, Aug. 2013.
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Fig.1. Clustering results on Yale face database. (a) Accuracy. (b) Normalized mutual information.

Fig.2. Clustering results on the Caltech 101 database. (a) Accuracy. (b) Normalized mutual information.

Fig.3. Clustering results on ORL database. (a) Accuracy. (b) Normalized mutual information.
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databases. Meanwhile, cdNMFF shows better perfor-
mance than CNMFF on these databases. In addi-
tion, cdNMFF achieves the best performance on ORL
database, and cdNMFKL demonstrates better perfor-
mance than CNMFKL. It is because that cdNMF can
learn a set of discriminative basis vectors which are
enforced to represent better for their own classes but
worse for the others. Thus, data points with the same
class label will have similar representations, and con-
sequently the obtained new representations can have
more discriminative power than CNMF which just sim-
ply embeds the label information in the representations.
Note that Frobenius norm cost for cdNMF shows bet-
ter performance than KL-divergence cost on ORL. This
result is similar to CNMF that Frobenius norm is more
appropriate for ORL data than KL-divergence.

6.5 Parameter Selection

In the experiments, the tuning parameters in cd-
NMF, i.e., λ for cdNMFF and γ for cdNMFKL, are
verified by cross validation to avoid over-fitting. Fig.4
shows how the performance of cdNMFF and cdNMFKL

varies with the parameter λ and γ respectively on Yale
database for cluster number N=10. Thus, we set λ = 1
and γ = 10 on Yale database. Due to the space limi-
tation, we have not showed the results on ORL dataset
and Caltech dataset whose are similar. Specifically, we
empirically set λ = 0.1 and γ = 10 for the ORL data,
and λ = 10 and γ = 1 for Caltech data. It is easy to find
that cdNMF is stable with respect to the parameters λ
and γ.

6.6 Computational Complexity Analysis and
Convergence Study

Based on the Frobenius norm and KL-divergence
cost respectively, we utilize iterative update rules to

minimize the objective functions of the proposed cd-
NMF. To analyze the computational complexity, we
count the number of operations (addition, multiplica-
tion and division) based on the updating rules. Speci-
fically, the overall costs of cdNMFF and cdNMFKL are
the same as the original NMF for each update step
(i.e., O(mnt)). In CNMF algorithm, the overall cost
of CNMFF is O(mnt), while that of CNMFKL becomes
O(n(m + n)t).

In addition, we have theoretically proved the con-
vergence of cdNMF. And now we experimentally show
the speed of convergence of cdNMF in comparison with
NMF in Fig.5. Note that we set the cluster number
N = 10. Fig.5 demonstrates that our cdNMF converges
as fast as NMF within 200 iterations.

7 Discussion and Conclusions

In this paper, we proposed a class-driven NMF
method for image representation. To utilize the label
information of training data, we associate class labels
with basis vectors by introducing an inhomogeneous
representation cost constraint. This constraint leads
to learn a set of discriminative basis vectors which are
enforced to represent better for their own classes but
worse for the others. Therefore, the data samples in
the same class will have similar representations. Then
the new representations can have more discriminating
power than CNMF which just simply embeds the label
information in the representations. The experiments
conducted on standardized datasets have demonstrated
the effectiveness of the proposed method. However, the
inhomogeneous constraint only focuses on minimizing
the inhomogeneous coefficients while fails to consider
maximizing the homogeneous ones, which is not suffi-
cient to learn an optimal structured basis. Studying
such basis for enhancing cdNMF is our future work.

Fig.4. Performance of cdNMF vs parameters λ and γ. In particular, λ is the tuning parameter in cdNMFF and γ is in cdNMFKL. In

addition, the test values for both λ and γ are {10−2, 10−1, 1, 10, 102}. (a) Accuracy. (b) Normalized mutual information.
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Fig.5. Convergence on Yale, ORL and Caltech database. (a) Yale-NMF. (b) Yale-cdNMFF. (c) Yale-cdNMFKL. (d) ORL-NMF. (e)

ORL-cdNMFF. (f) ORL-cdNMFKL. (g) Caltech-NMF. (h) Caltech-cdNMFF. (i) Caltech-cdNMFKL.
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